Data Quality

Outline India believes in ensuring data quality at each step of the research cycle, right from study design, data collection, to sharing findings. These include-

- Field training by researchers who work directly with the partner, including classroom, and mock exercises

- Unannounced field visits by core staff

- Multiple levels of data reporting across coordinators, supervisors, field workers and resaerchers

- Back checks

- Audio and text audits

- End of day discussions

- Enumerator and geography level data checking by quantitative researcher

We qualitatively pre-test survey tools in a location with a similar socio-demographic profile to the study site. This helps us check consistency, appropriateness of translation, relevance, and context, as well as uncovering inconsistencies.

Through our learnings from the pre-test, we prepare detailed training manuals for each study in consultation with the client, to ensure clarity and standardization in data collection.

Field workers are trained on the background of the evaluation, a question-by-question overview of the survey tool, cultural sensitivity, and ethical research considerations, technical training, obtaining informed consent, data security and data transfer. Training includes field mocks and debriefing sessions so that we can resolve any outstanding issues before data collection begins.

Post the training period, our researchers stay on the field for initial days to monitor each field worker, clarify doubts, address linguistic and comprehension inconsistencies and implement the sampling strategy. The Field Manager continues to stay on the field for additional days to provide ongoing support.

We make sure to regularly obtain ethical approvals for our projects. We ensure the privacy of our respondents, and thereby take all the necessary precautions to keep their responses confidential. 

We use digital data collection devices like Computer-Assisted Personal Interviewing (CAPI) platforms to conduct face-to-face interviews. Through CAPI we incorporate hints and instructions for field workers, record and visualize the location of interviews, take pictures, switch languages and monitor data in real-time.

Before each project, we put together project-specific field teams who have cultural and linguistic familiarity along with relevant domain experience. The finalized teams are established from their performance post-training by our researchers, based on standardized performance assessment protocols.

There is a ceiling limit to the number of interviews that a surveyor can conduct in a day, to ensure quality. The duration of each interview is recorded and included in the final data set.

Each survey form and data point goes through three levels of approvals and quality checks – Field Supervisor, Field Manager, and Data Manager. We can troubleshoot inconsistencies and errors, and re-train/debrief individual field workers in real-time. Additionally, we conduct telephonic and in-person back-checks.

For qualitative data collection, we re-visit recordings and field notes to ensure that transcriptions are accurate and context is provided to make sense of them.

After each study we put together a field report: detailing data collection context and progress, documenting field definitions and assumptions and providing recommendations.


Being on field is an adventure in itself. All field missions are unique, bringing strange, funny, and on occasions disturbing anecdotes to help us learn and grow as researchers.

“How do you clean your hands?”

“With mud”, he answered. 

“Could you show us?”

He walked over to the tap, diligently scrubbed his hands with water, applied soap and washed it off. No mud ever entered the process.

It was a study to understand hand hygiene practices, and we were using a survey tool, enumerators’ observations and spot checks to understand how people washed their hands. The rationale for using multiple methods was to check how people washed their hands, without trying to impress the enumerator or changing their behavior because they were being watched.

As this example shows, different tools found different answers. Yet it was difficult to reconcile the findings during analysis as there was no accompanying qualitative data to explain why the respondent would say one thing and do another. Luckily, during the pre-test, our researchers had noticed this. We found that respondents, who had interacted with peer educators telling them to wash their hands with soap and water, thought they were being asked to show the ideal way to wash hands and not how they normally do it.


“What's your age didi?”

“17”, she giggles, her grey hair glinting in the sunlight. 

“Didi are you sure you are 17?” “Yes, Yes”

Concepts of time and space in some rural areas aren’t the same as Western ones. Yet almost every survey you come across asks the question - ‘what’s your age?’ Over the years, we have developed strategies to answer this question.

For young children, we check their government-issued MCP card. If they don’t have one, we ask if they were born before or after the most recent local natural disasters and then make an educated guess. For adolescent girls, we ask how long ago they started menstruating, and use the average age of menstruation to calculate. For men, we ask family members and neighbors.

And for the didi we met in Bihar, we asked if she was alive when India became independent? Turns out she was.


Respondents don’t just stay at the field site – they move around over time. Especially in rural areas, members of the household often migrate to nearby cities or urban areas in search of work. But what happens when we are required to conduct a baseline, midline as well as an end-line study in the same location with the same respondents? You may not find your respondents in their home all year round. And this is exactly what happened to us!

We were conducting an end-line study in Rajasthan in November, but just couldn’t find the baseline respondents we had surveyed earlier. We knocked on their homes only to find from the family members that the original respondent had migrated either to Gujarat to harvest cotton or to Punjab to sow wheat.

Lesson learned: Look at migration patterns and cropping cycles before deciding on study phases!


A loo isn’t supposed to be pretty but this one was. A bright yellow building, newly painted, it gleamed in the sun. The teacher who was guiding us pointed it out proudly – “that’s the girls’ toilets” she said.

“Can we go in?” we asked. “It’s locked” she stammered. “Don’t you have the key?” we asked, wondering why anyone would lock a toilet. By this time the School Principal had joined us. We told him it was a beautiful building and could we look inside? Again he didn’t seem keen, but he unlocked the building.

And inside was a bare floor, no latrine, no tap, not even a hole.


It was during an interview with a school principal, a well-respected man in the community. The respondent was all too happy to cooperate, answering our researcher’s questions at length. But in the middle of the interview, he paused and grabbed her hand, explaining that he holds the hands of disobedient children. But he didn’t let go.

She finished the interview, extracted her hand and left with her colleagues. But it shook us all up, an unnerving and unwelcome incident. For the remaining interviews, we asked a male field worker to accompany our female staff, and there were no more incidents. But as an organization, we do vehemently defend and uphold our independence and work towards making the development sector gender-neutral. This was a sad setback.


She had been following us for hours. Survey after survey, a steady shadow that dogged our steps despite the mid-day heat, at the height of the Delhi summer. “Didi, why are you here?” we finally asked. “Survey me as well” she answered.

She wasn’t one of our randomly selected respondents. The survey was long, almost two hours, and we normally had to beg respondents to take it, not fend them off. “Didi, why do you want to be surveyed?” we asked. Her answer was garbled with her passion but with some help from her neighbors, we finally got the story.

A couple of years ago, another set of researchers had visited and administered surveys. Like us, they were randomly choosing respondents. But unlike us, it was for the baseline of Randomized Control Trial where the selected respondents were given monetary and technical help to construct houses. She hadn’t been selected, but her neighbors had. And she had watched over the years, as they built their fancy homes while she was forced to live in her shack. Determined not to be omitted from a survey again, she now makes sure that surveyors include her.


“Aapke ghar mein kitne purush rehte hain?”
“Kitne aadmi rehte hain?”
She glared at us.
Did we make a mistake? Yes, we did. In Rajasthan, the word aadmi denotes “husbands”, not men. For our respondent, the question translated to “How many husbands do you have?” No wonder she was offended.
We wanted to know the number of male members living in the households. Finally, after apologies, some subtle probing we got the number.
Lesson learned: There are more linguistic variations than what we might be aware of. So be wary while translating!

The village was, as is often the case, remote – 3 to 5 kilometers from the nearest road. Coming in we were met with stares instantly, our guide, a local ASHA, told us that outsiders were rare. This wasn’t unique but odd to us. The villagers followed us around, tense, listening carefully to what we were saying in our unfamiliar accents. Our study – on the topic of sexual and reproductive health – was a sensitive one and we were to talk to young adolescents in groups by themselves. The village members were clearly not happy with this, and although the village’s ASHA and Mukhiya supported us, we were not welcome. We ended up having a small group discussion with the few adolescents whose parents were comfortable. We left quickly, the villagers followed us to ensure that we were gone.

“Why were we met with so much hostility?” We asked the ASHA, the Mukhiya, and the few friendly respondents.  Soon the story came out – there were rumored cases of outsiders luring children away from a neighboring village, and harvesting their organs. Us, strangers coming in and wanting to speak privately with children had unknowingly triggered the villagers’ fears.

For institutional review boards, the ethics are clear – you go to a village, you get informed consent, tell the respondent the risks and benefits, talk to the respondent privately so that they are not ostracized for their views and then you leave. We had followed these best practices and more, going ahead and talking to the ASHA and Mukhiya, explaining our study and gaining their support. But the backlash still happened. How do you get data from a place that doesn’t trust you?


A question on the labor status of an individual seems pretty easy to explain when looked at from the outside. But as you delve deeper into it, you discover the multiple layers. In a training session that we conducted, while giving examples on how to categorize an individual's current labor status, one field enumerator asked, "What is the kind of employment of a priest?"

Another enumerator answered, "Self-employed".

This led to a long drawn discussion among the field enumerators on how it is neither of the above and the ambiguity had to be resolved with the following explanation, given the context of the assignment. A priest employed by a temple trust and paid a monthly salary will be categorized as a "salaried employee". On the other hand, a priest who conducts ceremonies as and when required at houses of people or other places will be marked as "other" in the options list and be specifically listed as a "daily wage earner”. This simple question of a field enumerator led to a very important probe being incorporated in implementing the survey instrument as and when such a response is received.

Lesson learned - Even the simplest of questions come with its own set of connotations and may require in-depth probing to arrive at the desired answer.

We are taught to expect the unexpected when on the field. However, little did we expect what befell us in Araria, Bihar. Since our guide contained sensitive questions and the respondents were 15-19-year-old girls, we requested privacy to conduct our focus group discussions in the local primary school. However, the next day when we returned to the school, we were surrounded by a crowd of agitated villagers who refused to let us continue for fear that we may kidnap their children.

Eventually, after we managed to calm them down, we thoroughly explained the purpose of the study to them. However, the situation had spiraled to such an extent that we had to exit that village and drop it from our sample. It was only later that we found out that the reason for such animosity towards outsiders stemmed from an incident that had occurred a couple of months ago. Apparently, two young girls of the village were taken to Mumbai on the pretext of getting employment. Instead, their organs were harvested and they were sent back to the village on a train.

Lesson learned: We should have entered the village a day prior to our interviews and explained our study to the Pradhan. This would also have helped us gain the confidence of our respondents.

The first step to smooth data collection is to develop a well thought out and sound field plan. However, even meticulous planning cannot always prepare you for the curve-balls that are thrown your way when you are on the field. In such situations, thinking on your feet and improvising are the only ways to ensure that data collection progresses unhindered. Improvisation was our greatest tool in completing our fieldwork in North 24 Parganas district of West Bengal. However, we did learn a valuable lesson.

The greatest take away from our field experience in West Bengal was to never enter the field without all prerequisite permissions and clearances. The study was to understand the role played by elected representatives of Gram Panchayats in local governance and development. Due to the politically sensitive nature of this study in a politically volatile environment characterized by the polarization of parties, elected representatives in many of the Gram Panchayats expressed distrust, and suspicion towards the motives of such an exercise, refusing to consent to be surveyed in the absence of formal permission from local authorities. As such, we faced great difficulty on the field in meeting the initial sample requirements and had to modify our sampling strategy mid-way which had many operational and budgetary implications.

Lesson Learned: It is imperative to get requisite permissions from local bodies, as far as possible, before entering the field for data collection. While this may not be necessary for household studies, it is absolutely vital for studies that are politically sensitive.

Often while doing fieldwork, we come across respondents who don’t understand the questionnaire and tend to interrogate more about the same. They usually find questions bizarre and challenging.


We recently did a psychometric study for the University of Virginia on Environment, travel, and well-being in Delhi.  The study tried to understand how the residents of Delhi feel about their surroundings and environment.

Enumerator: “Where would you like to live in Delhi?”

Respondent: “Why? Are you buying a house for me?”

Further, after this question, she also seemed a little irritated on the kind of questions that were being asked and started to focus on her work. 

Thus, we can observe that even simple questions can often become the reason for respondent’s fatigue if the background of the study and the type of questions that will be asked are not explained in the right manner. This implies that it is crucial to make sure that before starting any survey the enumerators must explain the background of the study and the type of questions in a proper manner. 


Subscribe to our newsletter